Site icon Medical Actu – Actualités Médicales Quotidienne – Actualité Santé

Carbohydrates, (oses)

Advertisements

Carbohydrates, commonly called “sugars”, are an essential source of energy for the body. They can be used directly by the body or stored either in the form of glycogen in the muscles and the liver (where they constitute easily mobilized reserves), or in the form of triglycerides in adipose tissue.

The foods richest in carbohydrates are cereals (bread, pasta, rice, quinoa…), legumes (lentils, beans, peas…), fruits and of course sweets and sugary drinks.

Carbohydrates can be composed of glucose, but also of fructose, maltose, galactose (in lactose)… and the length of their chain can be very variable.

Carbohydrates, (oses) assemble in carbohydrates. None are essential.

The oses are simple sugars, in a way “micro-fatty acids”. Most of the important doses in biochemistry and human nutrition are 6 carbon. They are hexoses, like

Two oses form a disaccharide like

Complex carbohydrates: polysaccharides, are polymers of ose:

  • Oses (fructose, glucose, galactose)
  • Disaccharides (sucrose, lactose, maltose)
  • Polysaccharides (starches, glycogen, fibers)

Some proteins have carbohydrate parts, the glycoproteins present in

Combine lipids and oses, lipopolysaccharides, cerebrosides and gangliosides.

Lipopolysaccharides (LPS) serve as antigens, are an integral part of the HLA system of histocompatibility and in blood groups. When they are of bacterial origin they can be violently pro-inflammatory (endotoxins).

Cerebrosides are major components of white matter, gray matter and myelin. There is also some in the skin.

Gangliosides are receptors and transduction factors incorporated into cell membranes where they play important roles in cell-to-cell communication, immunity, growth, differentiation, tumorigenesis (abnormal gangliosides appear in cell membranes cancerous).

We find oses in nucleotides: deoxyribose is integrated into DNA and ribose into RNA.

Slow carbohydrates – fast carbohydrates:

For a long time, it was believed that short-chain carbohydrates were the so-called “fast” sugars and that long-chain carbohydrates were the so-called “slow” carbohydrates. This is why bread, industrial breakfast cereals and potatoes have long had this reputation as “slow sugars”. Today, we know that this classification is totally wrong. Fluffy white bread, rich in starch, is a quick sugar. It is ventilated, digested quickly and releases its energy very quickly into the blood, which promotes pumping, temperamental instability, weight gain and also increases the risk of type 2 diabetes in the longer term. White bread, mashed potatoes, well-cooked vermicelli, rice pudding… are therefore “slow fake sugars”.

On the other hand, semi-wholemeal or wholemeal breads, al dente pasta, undercooked risotto rice … richer in fiber and denser are real slow carbohydrates.

Glycemic index:

The glycemic index (GI) makes it possible to estimate the impact of the sugars released by food on the blood glucose level (glycemia). Two foods containing the same amount of carbohydrate can therefore have completely different effects on our blood sugar. Foods with a high glycemic index will cause blood sugar levels to rise quickly and sharply. We will talk about fast carbohydrates. Those with a low GI will make it rise slowly and weakly. We will then speak of slow carbohydrates.

If you wish to consult a list of glycemic indexes or to find out more, consult the international table of glycemic indexes on Food advisor, or www.lanutrition.fr , or in the book “The new IG diet” published by Thierry Souccar. There you will find a summary table of the GIs of various staple foods. But the most important thing is to remember a few main principles, not to remember lists of glycemic indexes by heart.

Why do foods with a high glycemic index make you fat?

When we ingest carbohydrates, they are digested (cut into small pieces) and released as monosaccharides (most often glucose). This glucose will end up in our blood and therefore raise our blood sugar. In order to allow the use of this glucose by our cells (as fuel) and cause the formation of glycogen in the liver, the pancreas will release a hormone, insulin, which will lower our blood sugar. During a large consumption of hyperglycemic foods, the amount of insulin released will also be large and the sugar will no longer be converted into glycogen, but into triglycerides, that is to say into fat to be stored. This is all the more so since insulin causes triglycerides to enter the adipose tissue massively.The insulin released in excessive quantity will therefore cause an increase in fat mass.

In addition, glucose sticks to proteins and inhibits them. It is the glycation which will slow down all the enzymes, for example those which are used to make ATP. However, glucose not transformed into ATP will also be transformed into triglycerides to be stored instead of being spent on useful energy.

In addition, the rise in blood sugar and excess insulin will cause a secondary drop in blood sugar, a phenomenon which calls for sugar and triggers food intake again.

Finally, fast carbohydrates unbalance the flora of the colon in favor of bacteria which stimulate the appetite, increase the energy catabolism of cellulose and have a pro-inflammatory effect which causes overweight to progress to its complications (glucose intolerance and cardiovascular pathologies).

Glycemic load:

The GI tells us about the quality of the sugars but not on the quantity ingested. This is the reason why this notion of GI was refined and supplemented by the notion of glycemic load (CG) in the late 90s by Walter Willett. This notion of glycemic load makes it possible to assess the ability of a food to raise our blood sugar for a common portion of the food.

Its calculation is very simple. Just multiply the GI by the amount of carbohydrate in the portion of food you usually eat and divide it by 100.

CG = (GI X AMOUNT OF CARBOHYDRATES IN THE PORTION) 7100               

For a given food, a GC is considered low if it is less than or equal to 10, moderate if it is between 11 and 19 and high if it is greater than or equal to 20. The glycemic load for the day will ideally be around 80 and certainly should not be greater than 120.

Thus, 60g of “Corn Flakes”, which have a very high GI (82), contain 50g of carbohydrates. The CG will be (50 x 82) / 100 = 41. They are therefore a real bomb for our pancreas!

In contrast, a 200g serving of watermelon which also has a fairly high GI (76) contains only 13g of carbohydrate. It will therefore have a very acceptable GC of (13 x76) / 100 = 9.9.

There aren’t many examples of foods with a high glycemic index and low glycemic load, however, as there is with watermelon. Also, while this notion of GI has been criticized, it seems today that it remains an indicator as reliable as the CG for classifying carbohydrates. The GI and the CG are therefore often correlated, although there are some exceptions it is true.

Here are some examples of foods with a high CG: fries, Big Mac or Giant hamburgers, crisps, colas, processed breakfast cereals such as Corn Flakes (and all those chocolatey ones that are even worse), pizzas, etc.

Insulin index:

More recently, these concepts have been supplemented by that of the insulin index (II). We are no longer talking here about the ability to raise blood sugar but rather about the secretion of insulin which follows the ingestion of food.

A chronically too high insulin promotes acne, overweight, inflammation (and therefore cancer, cardiovascular disease,) and type 2 diabetes. The benchmark II is that of white bread. It is 100.

For many foods, PIG and PII are correlated. Thus the sweets have very high GI and II. But it seems that some foods can have a low GI but a high II. This is the case, for example, with certain dairy products containing whey, such as yogurts and fresh cheeses. A yogurt has for example a GI of 62 but an II of 115 (more than white bread and equivalent to a chocolate bar!). Adding milk, even in normal quantity (a small glass of 200 ml) to a food, also increases the insulin index (and not glycemic) of the ingested food.

This is because insulin is not only released after a meal rich in carbohydrates. Researchers have found that the association of certain amino acids (constituents of proteins) with carbohydrates promotes the release of insulin twice as important as the same amount of carbohydrates consumed alone. Today, few foods have been the subject of an insulin index calculation, but note that white bread has an II of 100, and sweets such as chocolate bars or candies can go up to 160!

To lower the glycemic index:

What are the benefits of a low glycemic and low insulin stimulating diet?

Focus on some carbohydrates:

Oses and health:

Glucose:

Glucose is obviously essential for survival, as it is the

main fuel for cells, and practically the only fuel for the brain

its level in the blood which:

This glycation is amplified in diabetes with all the consequences that we know: lack of energy, vulnerability to infections, early cardiovascular pathologies, premature cognitive decline, accelerated aging.

Drugs on our plates:

the giants of the agro-food industry provide 80% of the food consumed, centered on addictive cocktails in which sugar holds a central place, the only Oreo cookie from Kraft brings in a billion dollars a year, it is the result of ‘massive investments in the trapping by the taste of sugar and various chemical additives (3 billion dollars per year), the world consumption of sugar has tripled in 30 years, 5 kg of sugar are bought by the French per person and by year, but they consume 50 kg (45 being hidden in industrial foods), in animals sugar dependence is preferred to cocaine addiction, food addiction is objectified in humans by studies of brain imaging, the association of Overeaters in Belgium is built on the model of Alcoholics Anonymous,”I prefer to eat than to make love”, William Loewenstein, addictologist: “dealers retain their customers through sugar, salt and fat”, Nestlé, Danone, Kraft, Unilever decline requests for interviews for the documentary, the number of obese people has doubled in the space of a generation, Olivier de Shutter, special rapporteur at the UN, calls on all governments to come out of inaction in the face of the scourges caused by the agri-food industry, this problem requires political mobilization in the same way as global warming, Monique Goyens, representing a federation of consumer unions is fighting for the imposition of a 3-color code (red, orange, green) warning about the quantities of sugar / salt / saturated and trans fats in foods,a project against which the agri-food industry has successfully spent $ 1 billion in lobbying the European Parliament, on a voluntary basis, a few distribution networks in Germany and Portugal have adopted this system, Serge Hercberg in France is proposing a system signaling in 5 colors which immediately aroused violent opposition from industrialists, William Bourdon, lawyer believes that manufacturers should be prosecuted when they conceal the effects of the ingredients they use to make their products addictive, Jacques Lalanne of the CPAM of the Sarthe: 16 million French people have chronic pathologies, 33% are overweight, overweight and obesity cost 147 billion dollars per year, 10 billion euros per year in France, Danish deputies, represented by Christel Schadelmouse,voted a tax on sugary and fatty products, France taxed sugary drinks, Ellie Krieger, chief, believes that the industry can make money with healthy products, testimony of Joan Gussow, American nutritionist who was pioneer and given the warning several decades ago, it advises not to buy in mass distribution anymore, the consumer can, by his choices, force the industry to evolve, without waiting for governments to have the courage to take action commensurate with the problem.it advises not to buy in mass distribution any more, the consumer can, by his choices, force the industry to evolve, without waiting for the governments to have the courage to take measures to the height of the problem.it advises not to buy in mass distribution any more, the consumer can, by his choices, force the industry to evolve, without waiting for the governments to have the courage to take measures to the height of the problem.

Fructose & Health:

Fructose is a monosaccharide with a very low glycemic index, which (wrongly) earns it a very good reputation. Consumed reasonably and in natural form via fruits, it does not of course present any health problem. But it is also very present in the agave syrup which has such good press (and in the USA in industrial products in the form of corn syrups enriched in fructose). However, studies show that taking added fructose opens the appetite, promotes weight gain, glycation, insulin resistance and metabolic syndrome …

Interests:

Problems :

Studies indicate that:

In practice, fructose in fruits is associated with fiber and protective nutrients.

Except in overweight, diabetes and hypertriglyceridemia where you should not abuse some fruits very rich in fructose such as dates, dried figs, grapes, there is no problem to consume fruits even in quantities.

> On the other hand:

are unacceptable to overweight people, diabetics and people with hypertriglyceridemia and should only be used in small doses by others.

On the other hand, higher doses of fructose just after prolonged exercise facilitate the hepatic glycogen recharge of athletes.

Lactose and health:

Lactose intolerance would concern 10 to 30% of European and North American populations, 75% on average in the world. If lactose is poorly digested (due to lack of lactase), it can be a source of digestive disorders bloating, diarrhea, abdominal pain, abdominal cramps, headache, vomiting (especially in children), constipation, this called “lactose intolerance”.

Test: measurement of the hydrogen concentration in exhaled air increases after absorption of lactose if the subject is intolerant

> http://fr.wikipedia.org/wiki/lntolérance_au_lactose

But if lactose is absorbed it accumulates throughout life in tissues, especially the lens and in the sheaths of the nerves where galactose is transformed into galactitol by aldose reductase.

Galactitol, very hygroscopic, attracts water, cracks the proteins of the lens, which causes early cataracts and compresses the nerves, which gives rise to peripheral neuropathies (obviously the earliest in diabetics, but this phenomenon also affects patients with non-diabetics who are heavy consumers of fast sugars and / or dairy products).

On the other hand, aldose reductase is inhibited by many polyphenols which are therefore protective.

Taurine also appears to be protective in an animal model.

> Malone J et al, Taurine prevents galactose-induced cataracts, Diabetes Complications, 1993; 7 (1): 44-8

Studies show that consuming 100 ml of milk per day or more increases the risk of cataracts three-fold in the elderly and six-fold in diabetics

> Inès Birlouez Aragon http://hal.archives-ouvertes.fr/docs/00/89/94/51/PDF/hal-00899451.pdf

Sweeteners and health:

There are several on the market. Not everyone agrees on their health effects, but one thing is certain: they are not the solution to weight problems on our planet. Since their arrival on the market (for example aspartame was discovered in the 60s and put on the market in Europe in the 80s), we really cannot say that the obesity problems have been solved. Far from there. Add to this that sweetened foods are sometimes (not to say often) high in fat, phosphoric acid (promoting osteoporosis), colors or additives and therefore cannot be assimilated to healthy foods.

Synthetic sweeteners have the following drawbacks:

NOTE THAT A FRENCH STUDY FOUND THAT THE CONSUMPTION OF DIET SODAS INCREASES THE RISK OF DIABETES.

IN A COHORT OF MORE THAN 66,000 WOMEN, THE DAILY CONSUMPTION OF SUGARY DRINKS (MORE THAN 359 ML / WEEK) INCREASES THE RISK OF TYPE 2 DIABETES BY 34%, THE CONSUMPTION OF LIGHT SWEETENED DRINKS (MORE THAN 603 ML / WEEK) INCREASES RISK BY 121%.

FAGHERAZZI G ET AL, CONSUMPTION OF ARTIFICIALLY AND SUGAR-SWEETENED BEVERAGES AND INCIDENT TYPE 2 DIABETES IN THE EPIDEMIOLOGICAL STUDY WITH WOMEN FROM THE MUTUELLE GENERALE DE L’EDUCATION NATIONALE-EUROPEAN PROSPECTIVE INVESTIGATION INTO CANCER AND NUTRITION COHORT, AM J CLIN NUTR, 2013 ;

97 (3): 517-23

ANOTHER NEGATIVE EFFECT: ENERGY DRINK CONSUMPTION LINKED TO PTSD IN SOLDIERS

HTTPS://WWW.THEBLAZE.COM/NEWS/2018/10/27/STUDY-ENERGY-DRINK-CONSUMPTION-LINKED-TO-PTSD-IN-SOLDIERS

Indeed, there are certain foods that increase insulin while they have no impact on blood sugar. Some researchers have been able to put forward that the cephalic phase of insulin secretion (secretion of insulin before the nutrients are absorbed, namely during chewing for example) is determined by the taste of the sugar and not by its fate. metabolic. They are therefore not “neutral” from a metabolic point of view. Indeed, sweeteners are detected in the tongue and in the digestive tract by the same receptors as those of food carbohydrates. This is why sweeteners interfere with the digestive absorption of carbohydrates and increase it when they are ingested concomitantly (a plate of pasta or bread with a diet soda for example).It is interesting to note that this effect varies according to the sweetener used, sucralose being the one that most affects the absorption of carbohydrates.

While the consumption of sweeteners is encouraged among diabetics to help them consume fewer calories and better control their blood sugar, they can actually have the opposite effect, it is a shame …

Jotham Suez et al, Artificial sweeteners induce glucose intolerance by altering the gut microbiota, Nature 2014

The most natural sweetener currently appears to be stevia.

But the products which contain it are often of poor nutritional quality (industrial products) and that as a sweetener, it therefore has the same faults, namely the maintenance of the sweet taste, etc …

Malrodextrins and xylitol are better options. The best option is to sweeten naturally with grape juice, mashed bananas, figs, etc….

To know more :

Author Jean-Paul Curtay

Exit mobile version